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Key message: We investigate the flux balance of managed and protected forests and the effects of using wood.

� Flux parameters of CO2 uptake and respiration do not differ between managed and protected forests.
� Accounting of harvest as immediate emission by IPCC guidelines results in a bias of forest climate mitigation

towards storage and neglects the avoidance of fossil-fuel use by wood use.
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1 Introduction
While global emissions of radiative-forcing gasses con-

tinue to increase every year, of which carbon dioxide

(over 40 Gt CO2 year−1) remains predominant (Cain

et al., 2019), forests are being studied for their potential

role of carbon sequestration, but also for provisioning

society with renewable material and energy. Noticeably,

these two roles, sequestering and provisioning, are op-

posed forms of mitigation strategies. Sustainable man-

agement is meant to maintain constant levels of carbon

stocks including soil carbon despite of harvest while se-

questration aims at increasing carbon stocks by restrict-

ing harvest. The debate about which strategy is more

suitable was so far largely discussed from economic per-

spectives (e.g., Baker et al., 2019, Favero et al., 2020).

More recently, the EU shifted its policy towards sequestra-

tion in detriment of wood use. The underlying assumption

is that forests’ carbon stock can be sufficiently increased as

to produce a large-scale, long-term, and stable carbon sink.

However, this ignores the risk of forests becoming unstable

as they age, a process that will be exacerbated by climate

change (e.g., Schelhaas et al., 2013, Kruhlov et al., 2018).

Until now, it remains largely unclear whether sustain-

ably managed forests contribute more towards climate

mitigation than protected forests (Luyssaert et al., 2018;

Schulze et al., 2020). The answer to this question is

complicated by the fact that fossil fuel use must be in-

cluded in the calculation because the use or non-use of

forests has implications for the level of fossil CO2 emis-

sions. Here, we are dealing with sustainably managed

forests where forest biomass (above and below ground

living and dead biomass) at landscape scale remains con-

stant, and not with exploitation forestry where harvest

exceeds growth and biomass declines, nor with forest

degradation and land-use change. Sustainability of man-

agement in forestry was defined by von Carlowitz about

300 years ago as “harvest should balance growth” (von

Carlowitz, 1730). Sustainable management does not de-

fine the amount of standing wood volumes, because

wood volumes depend not only on the site conditions

but also on the management objectives. They will be dif-

ferent for coppice, for high forests, and for continuous

cover forestry (Kramer, 1988). Even though the EU For-

est strategy (Resende et al., 2021) has widened the defin-

ition of sustainability including also social and

environmental aspects, we confine this broad definition

to the aspect of forest growth including humus dynamics

in the soil. Taking Germany as an example in this study,
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sustainability of forests is reached by management plans

that are re-assessed every decade for properties and co-

operatives that are greater than 50 ha and by certifica-

tion of management by independent agencies (PEFC,

FSC). We estimate that > 90% of the forest area in

Germany is managed sustainably.

In managed forests, harvest takes place as tending

and thinning where future trees are selected and re-

leased from competition (Savill and Evans, 2004) and

as final harvest of single trees or mature stands above

a ground cover of natural regeneration (Pretzsch,

2019). Tending, thinning, and harvest are actions con-

centrated on a fraction of the forest property

(Burschel and Huss, 2003) in order to increase the

growth of the stands and the quality of the stems. On

a sustainably managed property, tending or harvest in

a specific stand takes place once in about 5 to 10

years (Schall and Ammer, 2013). Thus, the area af-

fected by tending or harvesting every year is about

10% of the property and this affected area moves dy-

namically across the property where the impact of

harvest is only transitory at plot scale (Bouriaud

et al., 2019). The distribution of these actions over

space and time makes a comparison with fixed ex-

perimental plots of flux measurements difficult. In

addition, experimental plots are often concentrated in

mature forests. Thus, methodological difficulties re-

main in the quantification of the dominant carbon

fluxes as measured by eddy covariance (Foken, 2017),

because fluxes and harvest operate at different scales

in space and time (Schulze et al., 2021).

In addition to the question, to what extent manage-

ment or protection contributes to climate mitigation,

there is an ongoing debate about using wood for energy

production (Söderberg and Eckerberg, 2013). Wood has

a lower energy density than fossil fuels, but it is the pol-

itical aim to reduce fossil fuel emissions (see, e.g., EU,

2009). The use of harvested wood for products avoids

fossil fuel use, and the carbon in wood that is used in

products or for energy would otherwise be emitted by

microorganisms during decomposition. Thus, combus-

tion of fresh wood that cannot be used for products and

of wood products after use is an important contribution

to actively reduce fossil fuel use. Since emissions from

fossil fuel use make the largest contribution of all carbon

emissions, we think that any mechanism to actively re-

duce this component with immediate beneficial effects

on climate has priority over mechanisms that compen-

sate fossil fuel emissions, such as storage of carbon in

living and dead forest biomass. Consequently, it is an

additional aim of this study to explore the role of harvest

and wood-use in its effects on fossil fuel use.

The land-use based climate mitigation potential of

Central Europe is quite small at a high level of

industrialization (Roe et al., 2020), and this potential re-

sults mainly from a strict commitment towards sustain-

able forest management.

Here, we use published data with a focus on Germany,

due to the data availability. We compare these data with

global datasets whenever possible.

Forests that are managed for wood production com-

prise age class forests with natural regeneration, and

continuous cover forestry, where single trees are har-

vested when reaching certain dimensions. This contrasts

to land where harvesting and wood extraction are halted,

and growth contributes to increasing stand volumes and

to natural decay. In Germany, about 95% of the forest

area is managed, and about 5% of the area remains un-

managed (BMEL, 2015). This will change in the future,

when the EU request of 30% protection of the land has

been implemented (Resende et al.,, 2021).

Protected forest is mainly represented by National

Parks, where all successional stages are present at land-

scape scale (Korpel, 1995). In Germany, data from re-

peated inventories were available only for Hainich

National Park (Hainich, 2012). It should be kept in mind

that National Parks in Europe consist of formerly man-

aged forests or land formerly used for agriculture or

military purposes. Hainich National Park was a former

communal forest that was operated as coppice with stan-

dards before it became a military training area and then

a National Park, which is now growing into a high forest

(Hainich, 2012). The forest area increased with succes-

sion on former military installations. Untouched wilder-

ness landscapes do neither exist in Germany nor over

most of the European continent. Despite a long history

of national inventories, the comparison of managed ver-

sus protected forests has very seldom been made at

landscape scales (Bouriaud et al. 2019).

Our study is based mainly on flux measurements by

eddy covariance (Aubinet et al., 2000) which is a micro-

meteorological approach, in which the flux of CO2 into

and out of an ecosystem is directly and continuously

monitored at a time scale of 30 minutes. The approach

is critically evaluated by Foken (2017).

2 Carbon flow and storage in the forest
ecosystem
Figure 1 summarizes the carbon cycle of managed and

unmanaged forest in relative terms at landscape scale,

because absolute numbers depend on site conditions

and legacies of the past land use (Thom et al., 2018).

However, for Europe the average carbon input into for-

ests by photosynthesis is 1107 g C m−2 year−1 (Schulze

et al. 2009). In Fig. 2, this value represents 100%. It re-

mains difficult to estimate uncertainties, because harvest

and inventory data are available only at national scale

without error estimates.
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In forests, the turnover of leaf and root litter contrib-

utes to the main fraction of the carbon turnover (Clem-

mensen et al., 2013, Sierra et al., 2021). Only about 2 to

14% of the carbon cycle is via dead wood under pro-

tected conditions and 4 to 6% under management.

Under management conditions, about 13 to 16% of the

carbon cycle is harvested and channeled into products,

and only about 7% of GPP are eventually used for en-

ergy. Thus, harvest is a lateral carbon flux in which de-

composition or release of carbon takes place outside the

ecosystem where the carbon was fixed. Consequently,

we expect that ecosystem respiration at landscape level

should be reduced under management as compared to

protected conditions, irrespective of changes in the stand

microclimate due to harvest (Schulze et al., 2019).

In the following, we like to discuss the main fluxes

based on existing data from observations on experimen-

tal plots (Table 1). Some of the flux stations operate with

continuous measurements at a fixed location since more

than 30 years (Aubinet et al., 2000). Surprisingly, Table

1 indicates that differences between managed and pro-

tected stands were not significant in most cases. Never-

theless, we would like to highlight some general trends.

2.1 Ecosystem carbon uptake by photosynthesis and

losses by respiration

The input to the protected and managed systems is

photosynthesis, termed as gross primary production

(GPP) in flux studies. There are very few data available

that explicitly study the effect of management as op-

posed to protection. To our knowledge, Herbst et al.

(2015) is the only study to make this comparison, where

a tendency of 3% higher GPP under management was

observed in a beech forest. This was confirmed by the

global database of Luyssaert, but not by Bond-Lamberty

(Noormets et al., 2015). In these datasets, managed and

un-managed plots were compared irrespective of their

position to each other. We think that positive

Fig. 1 Schematic drawing of a forest enterprise that is subdivided into 10 compartments and each of the compartments consist of 3 sub-
compartments. Following a 10-year management plan, each sub-compartment is affected once in 10 years, exporting the equivalent of wood
that is accumulating on the remaining untouched area as harvest. Here, we show only 3 out of 10 years. In the center of the property, an eddy
flux tower exists which may never “see” the management action, except at night, where the footprint is lager. The owner may avoid harvest on
the tower-plot in order not to disturb the flux measurements
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feedbacks of harvest should exist on GPP whereby the

partial canopy opening in managed forests results in

more light and water and nutrients for the remaining

trees which would increase GPP per leaf area. The ef-

fects on groundwater depend on species and associ-

ated changes in leaf area and canopy structure

(Schulze et al., 2019). However, the significance of the

effect of management on GPP remains to be demon-

strated. Inventory studies suggest that growth is

higher under managed than under conditions of con-

servation (Table 2), but this could also be an effect of

allocation (Schulze et al., 2019).

Ecosystem respiration was estimated as an average of

coniferous and broadleaved managed forests for Europe in

Schulze et al. (2009). A separation between conifers and

broadleaved species reflects the differences in leaf area, fo-

liage turnover, and canopy structure. Herbst et al. (2015)

observed a 2% decrease and the Luyssaert database a 3%

decrease with management. This contrasts to a 22% in-

crease of respiration with management based on the

Bond-Lamberty database (Noormets et al., 2015). If car-

bon is exported and released into the atmosphere else-

where, as it is the case with harvest, ecosystem respiration

should subsequently decrease. However, such decrease

was also not observed in various thinning experiments

(Granier et al., 2000; Vesala et al., 2005; Saunders et al.,

2012), which rather reported an increase possibly related

to the increase of dead biomass (slash and root stocks)

from harvest and the partial opening of the canopy. A de-

crease in respiration was observed by Lindroth et al.

(2018) that was explained by higher removal of biomass.

Likewise, changes to the microclimate could have opposite

effects, with less precipitation interception by the canopy

cover resulting in more soil moisture, but also increased

incoming radiations resulting in a faster drying of the

upper soil, which has strong negative feedback on the res-

piration. As suggested by Moore et al. (2013), the reduced

input (such as litter fall) is probably the dominant factor

in the harvest-respiration relation. Thus, the influence of

wood harvesting on soil respiration remains controversial

(Moore et al., 2013, Mayer et al., 2017).

Ecosystem respiration (Reco) would be covered by het-

erotrophic soil respiration (Rhsoil) and by respiration of

living biomass. In the database of Luyssaert and Bond-

Lamberty (Noormets et al., 2015), the sum of plant and

heterotrophic soil respiration exceeds total ecosystem

respiration and GPP. According to Ciais et al. (2020),

soil respiration remains as one of the largest and most

uncertain flux. It remains inherently difficult to estimate

soil fluxes, partly because soil CO2 emissions tend to be

clustered both in time and in space, in unpredictable so-

called hot spots and hot moments (Leon et al., 2014)

making their survey particularly challenging (Phillips

et al., 2017). Modeling the long-term fluxes and the

sequestration rate of carbon in soils, Sierra et al. (2021)

showed that most of the leaf and root litter is being

decomposed within few years, and only little of the car-

bon remains in the ecosystem over longer time spans.

Nevertheless, total ecosystem-respiration is lower than

GPP by about 200 to 500 gC m−2 year−1 that could feed

changes in stand volume and to a small extent in soil or-

ganic matter (changes in storage) and lateral transport of

carbon by harvest and other losses even though ecosys-

tem respiration was not reduced.

2.2 Effects of harvest on ecosystem respiration

A decrease of respiration equivalent to the amount of

wood removal has not been observed in any of the plot

studies. The mismatch between a theoretical effect of

harvest on ecosystem respiration and field observations

may be explained by three hypotheses: (1) there is a

strong feedback between harvest and the remaining

stand in such a way that the remaining trees operate

more efficiently after receiving more light, water, and

nutrients, (2) there is a geographic mismatch between

stationary observations on experimental plots as com-

pared to a dynamic use of land by harvest, i.e., harvest

may occur outside the footprint of the tower, or (3) the

amount of export of living and respiring biomass is too

small to be detected by flux measurements, considering

the large variation of fluxes with climate and other dis-

turbances. The ability of eddy covariance systems to

measure soil fluxes under low turbulence remains largely

debated (Phillips et al., 2017, Barba et al., 2018), but the

current consensus is that its overall resolution is not suf-

ficient to quantify the magnitude of soil respiration

fluxes (Speckman et al., 2015). The export of harvested

wood contains mainly heartwood that does not respire.

The mismatch between stationary plots and

landscape-scale operations is illustrated in Fig. 2 show-

ing the outline of a model property that is divided into

10 compartments of different stand age, based on a 10-

year management plan. Each compartment is subdivided

into 3 sub-units, because it may take 30 years (equal to 3

management plans) to achieve natural regeneration. In

each year, only one tenth of the land area is affected by

tending, thinning, and harvest. In the center of the prop-

erty, an eddy tower exists which has a much smaller

footprint than the size of the property (50 to 200 m at

daytime, and 500 to 2000 m at night). Thus, manage-

ment activities on the property may never be “seen” by

the eddy flux tower, even though the amount of

exported wood includes the sub-compartment of the

tower. The variation of data in Table 1 may result from

this geographic problem.

An alternative explanation of the observations may be

that harvested wood consists mainly of dead biomass in

heartwood of standing trees that accumulated for
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decades. As a tree grows, only part of the stem remains

as sapwood which conducts water and nutrients and

which has living parenchyma cells that respire. The cen-

ter of the stem dies of and this part does not conduct

water nor does it respire. Nevertheless, heartwood

remains as an essential structural element of a tree. Be-

ing dead, it has no effect on instantaneous autotrophic

(Ra) and heterotrophic (Rh) respiration, and the har-

vested biomass is balanced by growth of sapwood of

other stands at the landscape level, which would be

Fig. 2 The carbon cycle of managed and protected temperate forests and of harvest and wood use in Germany. Data from Table 1, Schulze et al.
(2020), and from Grossmann (2020). DOC, dissolved organic carbon; DIC, dissolved inorganic carbon; VOC, volatile organic carbon. There is an
effect of tree species on the way wood is being used in products. Here, we separate between conifers and broadleaved species. The rate of
sequestration and substitution are based on national inventories (Schulze et al., 2020). Green: unmanaged forest, blue: managed forest, brown:
common fluxes

Table 1 Comparison of ecosystem flux data and ecosystem lateral fluxes. [gC m−2 year−1]. Percent values indicate managed as
percent of protected from the same data source

Parameter Source unmanaged managed

Gross Primary Production, GPP Schulze et al. 2009 1107 1107

Herbst et al. 2015; Knohl personal commun ication 1575 1627

Noormets et al., 2015: Luyssaert database 1562 1698

Noormets et al., 2015: Bond-Lamberty database 1989 1887

Ecosystem respiration, Reco Schulze et al. 2009 857 857

Herbst et al. 2015; Knohl personal commun ication 1063 1042

Noormets et al., 2015: Luyssaert database 1460 1460

Noormets et al., 2015: Bond-Lamberty database 1698 1384

GPP-Reco Schulze et al. 2009 250 250

Herbst et al. 2015; Knohl personal commun ication 512 585

Noormets et al., 2015: Luyssaert database 102 238

Noormets et al., 2015: Bond-Lamberty database 291 503

ecosystem turnover and plant respiration leaf and root turnover (Bond Lamberty database) 377 491

plant respiration (Luyssaert database) 1133 1460

soil respiration (Luyssaet database) 923 1013

sum 2056 2473

ecosystem storage and export Change in stand volume (Schulze et al. 2020; Schulze et al. 2020a,b) 0,4 - 225 35

Change in soil Carbon (Wellbrock et al. 2019) 40 40

harvest (Schulze et al. 2020) 0 230

sum 40,4 - 265 305
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visible only as Ra. Heterotrophic respiration (Rh) could

be affected by heartwood when the whole tree dies and

the stem becomes “deadwood.” However, heterotrophic

respiration from dead wood is only a small component

of Rh which is mainly driven by the turnover of leaves

and roots (Hanson et al., 2000, Clemmensen et al., 2013,

Ekblad et al., 2013, Brunner et al., 2013). Thus, Rh is not

affected by the removal of wood that consists mainly of

non-respiring heartwood, unless it rots (Oren et al.,

1988).

In view of C-fluxes, the process of heartwood for-

mation should be regarded as an additional lateral

flow of carbon into a non-respiring compartment

until wood rots in situ or is used for energy. In the

case of management, the carbon locked in heartwood

would be unlocked either by decomposition or by

combustion at a different location under conditions of

wood-use. This emission must be associated with the

ecosystem flux balance at least at the national scale.

There is a time-lag between sap-wood formation

(wood production), heart-wood formation, and de-

composition under conditions of sustainable manage-

ment, and the age structure of the forest at landscape

scale replaces time by space, which means that the

harvest is photosynthetically regenerated at the latest

at the time scale of a management plan (10 years). In

terms of flux observations, the amount of wood that

is extracted by harvest and that needs to be consid-

ered in the mass balance approach of the carbon

cycle is too small to be detected in a flux balance

considering the variation of other factors. The mis-

match between plot-scale and landscape scale obser-

vations could be a consequence of different scales in

time and space (see Cowie et al., 2021).

2.3 Ecosystem storage

If ecosystem respiration is smaller than GPP, a change in

ecosystem carbon contents is to be expected which

would take place as change in living and dead biomass

including soil carbon, where changes in the living bio-

mass are large compared to changes in soils (Schulze

et al., 2019) The quantification of the volume change of

aboveground biomass under protected and managed

conditions is of special interest. Ecosystem “storage”

would be the resultant total amount of living and dead

biomass. The number is important because it quantifies

the amount of carbon that can be accounted for by the

forest sector according to the IPCC Guidelines (IPCC

Guidelines, 2006). In the case of harvest a certain part of

this amount would actively reduce fossil fuel fluxes by

substitution of products that require large amounts of

energy in the production process (e.g., steel and cement;

product substitution) or replace fossil fuel in the process

of energy generation (Knauf et al., 2016). For managed

forests the change in storage is quantified as net volume

change by national forest inventories and by private in-

ventories for a 10-year management plan. However, for

protected forests, this number remains largely unknown

(see Irslinger, 2021). There are numerous plot studies

that indicate high changes of stand volumes in single

protected forests, but these observations do not com-

prise disturbance-related voids and there are no assess-

ments at landscape or management-unit scale of the

mean achievable stocks (Körner, 2020). High storage re-

fers generally to stands that were put under protection

few decades ago.

Luyssaert et al. (2008) already pointed out that par-

ticularly old forests are comparatively rare even in

completely untouched forest wilderness landscapes

due to the cumulative probability of disturbances. Old

forests can only develop if large-scale disturbances are

absent for centuries, which may be regarded as an

unusual situation. Old-growth forests are not immune

to disturbances: they can disappear and eventually re-

develop (Jandl et al., 2019). In Korpel (1995) “stages

of decay” occur in the primary beech forest on 42 to

45% of the primary forest area, while the “optimal

phase” with maximum wood stocks occurs on 20 to

22% of the area. The surveys by Korpel (1995) involve

the natural disturbance regime of the landscapes ex-

amined. The percentage of the areas of the individual

development stages does not change over time under

constant climatic conditions, but the location is dy-

namic at landscape scale.

In order to be able to assess the carbon stocks or

the sink function of forests under the conditions of a

natural succession, all stages of the forest cycle must

be taken into account on a landscape scale and not

only those that are rich in biomass or those that are

currently strongly accumulating (Ehbrecht et al.,

2021). Also, it remains unclear of what is protected

without wood removal and since when (Wirth et al.,

2009). The broad range of ecosystem storage of pro-

tected forest results from differences in spatial scale.

In Table 1, the large number (225 gC m−2 year−1)

originates from plot studies, while the small number

(0.4 gC m−2 year−1) originates from a volume change

at landscape scale, including disturbances, regener-

ation, and area extensions of entire properties. Irre-

spective of management, the landscape consists not

only of one age class of forest, and changes in forest

area are part of the dynamic at landscape level. The-

oretically, it is quite clear that freezing wood procure-

ment should lead eventually to an equilibrium where

forests reach a balance between absorption of CO2 by

photosynthesis and release of CO2 by ecosystem-

respiration and where no further increase in stocks is

possible (Gundersen et al. 2021, Paul et al. 2021,
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Stillhard et al., 2021) and where increasing stocks is a

risk of stand collapse (Loisel, 2020, Forzieri et al.,

2021). Furthermore, the continuous accumulation of

biomass is stimulated by the input of nitrogen from

atmospheric deposition (Gundersen et al., 2021).

In order to be able to assess proforestation strategies

(Moomaw et al., 2019) with regard to climate protection,

it is necessary to compare the current wood stocks of

sustainably managed forests with protected forests at a

landscape level. Soil carbon must be included in this

comparison, whereby sustainable forest management has

no negative impact on the organic carbon of the soils at

a landscape level (Achat et al., 2015, Johnson and Curtis,

2001, Nave et al., 2010). Sustainable forest management

also includes the conservation of soil stocks of nutrients,

especially basic cations (FVA Baden-Württemberg,

2018).

When harvested trees are processed into wood prod-

ucts, e.g., wooden houses, an additional storage of car-

bon outside the forest is created (Rüter, 2011). If a

managed forest landscape is in an equilibrium state with

high timber stocks, more carbon can be stored in the

forest and product pool together than in the case of a

proforestation strategy. The carbon in the product pool,

like the carbon in the forest, is part of the natural C

cycle and delays the emission of carbon. This is import-

ant to avoid tipping points of the climate.

There are few studies to show growth, respiration, and

net emissions as related to standing aboveground bio-

mass. By using repeated inventories, Paul et al. (2021)

showed for the Southern Beech in New Zealand that net

volume change increases initially in a growing stand, but

levels of when the stands reach about 400 m3/ha, while

ecosystem respiration continues to increase exponen-

tially. Thus, forest stands become a net CO2 source at a

stand volume of about 400 m3 ha−1. This observation

seems to hold also for European broadleaved forests

where the protected old stands of the Ukraine (Stillhard

et al., 2021) do not show a net accumulation of stand-

volumes, nor of basal areas. The compensation point at

which stands become a net source will depend on the

main canopy species.

2.4 Storage capacity of forest ecosystems

Table 2 shows that average and maximum biomass of

sustainably managed forests in Central Europe at the

time of harvest and regeneration is as high as it would

be without management (Korpel, 1995, Schulze et al.,

2019, Bouriaud et al., 2019) based on Fagus- and Picea-

dominated forests. Following Luyssaert et al. (2008),

NPP and NEP have a minimum in very young and very

old stands and reach a maximum between 30 and 100

years. In managed forests, a stage of high biomass per-

sists for about two to three decades until regeneration

has established. We expect that, as a result of climate

change, the ability of landscapes to store carbon will de-

crease due to an increase in forest types with lower car-

bon storage potential. Highly stocked forest ecosystems

will increasingly become an unknown source of greenhouse

gasses in the future with increasing the stocking and forest

age. The higher the stocks and the older the forests, the

greater the potential emissions of CO2 (Allen et al., 2015,

Hurteau et al., 2008, Millar and Stephenson, 2015, Schmidt

et al., 2010, Seidl et al., 2014, Seidl et al. 2017, Thom and

Seidl 2016). Consequently, the carbon stocks in protected

forest ecosystems are unstable as can be seen from the ef-

fects of a dry year in 2018 (Thüringen Forst 2020). The ex-

pected increase of large-scale fire-, wind-, or insect-related

disturbances indeed suggests that stocks are likely to de-

crease on landscape level making the reach of maximum

stocking capacity less probable (Seidl et al., 2014, 2017,

Mantero et al., 2020). It would be a risky policy as recently

exemplified by the World Heritage UNESCO forests where

over 10 sites became net carbon sources (UNESCO 2021).

Depending on the severity of the disturbance, the regener-

ation ability may be low (Kuuluvainen et al., 2017) with

long-lasting depreciative effect on the biomass stocks.

Therefore a “proforestation” strategy (Moomaw et al., 2019)

which intends to increase forest biomass cannot be justified

for sustainable forest management in terms of climate miti-

gation. “Storage” of carbon in forest biomass is of great risk

under climate change conditions, and the owner may have

to pay back any subsidies that were donated for storage.

Accumulating carbon stocks in forest ecosystems beyond a

certain level accepts that large amounts of CO2 could be

Table 2 Average and maximum biomass, stand age, and increment of managed and unmanaged broadleaved and coniferous
forest (Schulze et al. 2020)

Broadleved (Fagus) coniferous (Picea)

un-managed managed significance un-managed managed significance

average stocks
(m3 ha-1 life&dead wood)

435+34, n = 332 366+6, n = 9104 *** 421+37, n = 308 425+6, n = 15073 n.s.

Maximum stocks
(m3 ha-1 live&dead wood,
>94.Perzcentile

981+148, n = 46
of 732

919+195, n = 776
of 15519

n.s. 1118+202, n = 43
of 859

1098+201, n = 1456
of 29113

n.s.

area weighted age (yrs) 115 101 94 69

increment (m3 ha-1 yr-1) 8.99+0.9, n = 327 10.28+0.16, n = 8746 *** 9.01+1.04, n = 271 13.95+0.16, n = 14219 ***

Schulze et al. Annals of Forest Science           (2022) 79:17 Page 7 of 13



emitted in the next few decades due to global warming.

Curiously, carbon debts and payback time are not discussed

under these “high capitalization” strategies, though the rela-

tion between high stocks and high debt is immediate. Con-

versely, increasing or securing the existing stocks requires

active measures oriented towards higher stability and resili-

ence (Dobor et al., 2020, Zimová et al., 2020).

In addition, forests diminish their net carbon uptake

when aging (Luyssaert et al., 2008; Paul et al., 2021). Even

if old growth forests may remain a carbon sink under the

absence of disturbances, their net sink capacity is small

compared to that of young stands. Thus, the strategy of

aging the forests leads to a reduction of the forests carbon

uptake in relatively short term. Carbon uptake is currently

quite large in Europe (Ciais et al., 2020) due to an uneven

age structure which is based towards younger age classes

(Forest Europe, 2016). Also, forest increments are cur-

rently largely used for wood supply (BMEL, 2015), and

they are exposed to considerable nitrogen depositions

from the atmosphere at increasing levels of CO2 concen-

tration (Schulze et al., 2019). The use of wood therefore

has the direct consequence that forests are maintained in

a state of high net productivity with active atmospheric

CO2 absorption and sequestration, at rates undoubtedly

higher than that of old-growth forests.

3 Use of wood and substitution effects of fossil-
fuel emissions
Irrespective of the uncertainties of estimating storage

from ecosystem fluxes, it emerges that all the carbon

that enters into the harvest pathway returns to the at-

mosphere. Thus, wood-use is a bypath of natural decom-

position. In this context, the half-lives (e.g., the time for

50% decay of the original dry weight) of carbon in the

harvest and non-harvest pathway become important.

Schulze et al. (2021) showed that the half-lives of prod-

ucts are similar to the half-live of wood during

decomposition.

3.1 Effects on substitution

Carbon in products and product turnover are part of the

biosphere-atmosphere carbon cycle where the return-

times are independent of the fact that wood contains less

energy than fossil fuels, and independent of carbon stor-

age in the ecosystem. Thus, the use of wood for prod-

ucts (product substitution) and burning of wood for

energy production (energy substitution) is carbon neu-

tral under sustainable management confirming the find-

ings of Taeroe et al. (2017) and Sjølie and Solberg (2011)

as long as conditions of sustainability are met. In

addition, the on-site increase in wood volume (storage)

does not contribute to a reduction in fossil fuel use (Fig.

3). Fossil fuel is being avoided only by product and en-

ergy substitution (Nabuurs et al., 2017). Schulze et al.

(2020) showed for Germany at national scale that the

energetic use of the harvested woody biomass from sus-

tainably managed forests results in a net saving of 2.9–

3.2 t CO2-equiv. ha
−1 year−1 when accounting also for the

efficiency of energy conversion. This amount does not

yet include the energy saving by production of wood-

products instead of products made from iron, aluminum,

glass, or concrete. Product substitution was estimated to

be 2.8–4.9 t CO2-equiv. ha−1 year−1 and thus be even

higher than the energy substitution (2.9 to 3.2 t CO2-e-

quiv. ha
−1 year−1; Knauf et al., 2016, Schulze et al., 2020).

Following Roux et al. (2020), this is about 10 to 14% of

the German emission balance (Schulze et al., 2021).

The substitution effect varies with nations as it would

depend on the way energy is produced. In Germany for

instance, the substitution effect is larger than in other

countries of Europe, e.g., France where a large fraction

of its electric energy is produced by nuclear power-

plants. At the same time, Germany reaches a higher level

of harvest on a smaller land area than France, due to a

higher fraction of conifers, and due to more favorable

climate.

In the case of sustainable managed forests, the authors

cannot recognize any “carbon debt” because the carbon

contained in harvested wood is re-assimilated by the re-

growing biomass at landscape scale as it is released by

product use (see Cowie et al., 2021). The time to seques-

tration parity of wood depends on what energy it re-

places (Repo et al., 2012), but it also largely depends on

the productivity, and was found to be quite reduced for

intensive forest managements (Ter-Mikaelian et al.,

2014). The main indicator for sustainability at landscape

scale is that carbon stocks remain constant, which dis-

tinguishes sustainable forestry from exploitations where

harvest exceeds growth. Conditions for the carbon neu-

trality of using wood for energy production hence in-

clude the fact that harvest does not exceed the amount

of biomass that would have decayed naturally otherwise

(Ter-Mikaelian et al., 2015). This assumes de facto a

steady-state of landscape-level biomass. In Europe, how-

ever, the stocks have increased during the last decades,

despite intensive use of forests (Ciais et al., 2008). Con-

trary to the wood stored in the ecosystem that only

“compensates” atmospheric fossil CO2 increase without

affecting emissions, the harvested wood contributes to a

reduced use of fossil fuel. In addition, avoidance of fossil

fuel use by product and energy substitution is perman-

ent, while storage of carbon in the ecosystem is tempor-

ary due to the lability and associated risks of the forest

carbon stocks (Raymer, 2006, Forzieri et al., 2021).

3.2 The use of wood for bioenergy

The low energy density of the wood is of concern to en-

vironmentalists (Spiegel, 2020) when using wood for
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energy. Table 3 shows that the energy content of unpro-

cessed wood is lower than that of most fossil fuels, but

higher than the energy content of agricultural residues.

Corn-based ethanol has less energy per liter than it takes

to produce it (Pimentel et al., 2009). Wood products are

in a much better position. This difference almost disap-

pears when inspecting the CO2 emissions of various en-

ergy sources. Emissions of liquid fossil fuels are lower

and of agricultural residues are higher than those of

wood. When fossil fuels are burned, carbon from the

earth’s crust enters the biosphere-atmospheric cycle,

whereas the carbon in the wood is already part of it.

Since it is the political objective to reduce net emissions

by mainly reducing fossil fuel emissions, the comparison

with fossil fuels is not appropriate and the use of wood

remains more effective than the use of agricultural resi-

dues. In fact, small forest land holders in rural areas use

their forest mainly to generate fire wood, and thus do

not use any fossil energy for heating. These land-owners

fulfill the envisaged reduction of fossil fuel use even

today.

Bioenergy wood is a byproduct when harvesting con-

struction wood. A harvested stem always contains a frac-

tion that only can be used for energy. In addition,

processing of wood generates byproducts (sawdust, shav-

ings) that are presently used for energy. It could be that

these byproducts will be used in a cascade use for other

products in the future, but also these will be used

Fig. 3 Schematic presentation of the effects of non-management and of management on atmospheric CO2

Table 3 Comparison of various energy sources with respect to
their energy content and their CO2 emissions (FNR 2018)

Energy source Energy content
(kWh/kg)

CO2-emission
(kg CO2/kWh)

Narural gas 12,5 0,20

Diesel 11,8 0,27

Hard coal 7,4 0,34

Lignite 5,3 0,35

Wood 5,2 0,35

Straw, Hay 3,9 0,47
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eventually for energy. For these reasons, the use of do-

mestic forests and a regional fuelwood market remain as

a basic module of climate protection. In Germany, about

8% of the total energy production originates from bio-

mass (FNR, 2018). Due to its low energy content, trans-

porting firewood (e.g., in form of pellets) over very long

distances is not an efficient option (FNR, 2018). Further-

more, freezing the procurement of wood in Europe will

inevitably lead to increase the import of wood and pel-

lets from a longer distance (e.g., from Siberia and

Canada) with detrimental effects on the emissions and

on the low-productivity stands of these regions (Schulze

et al., 2016) or it will require an increased use of fossil

fuel. The use of wood from forests outside Europe is

usually not CO2 neutral (see Köhl et al., 2020). Agave

and other species are presently tested for production of

particle boards in Mexico (Moreno-Anguiano et al.,

2021) in face of the conservation strategies of the EU

(EU, 2020). Furthermore, increasing the pressure of

wood use on forests with high diversity but far smaller

protection measures would have direct and irreversible

detrimental effects on global-scale biodiversity.

The problem of accounting emerges from the

IPCC Guidelines where the forest sector is separated

from the energy sector. Thus, in the national IPCC

reports, forestry can only account for wood that is

stored as biomass in the forests and in products

made of wood. It is the energy sector that records a

decrease in fossil fuel consumption. However, since

bioenergy comes not only from forestry source, a

simplified accounting scheme had been established

with the Kyoto protocol: Any wood harvest is

accounted as immediate emission in the forest sector

independent of the life-time of products. Emissions from

bioenergy remain unaccounted in the energy sector. To

estimate the contribution of forestry to climate mitigation,

the amount of fossil fuel saved by products and biofuels

should not to be accounted as an immediate emission, but

as an achievement of the forest sector. A proper consider-

ation of the contribution of forests through products and

bioenergy would consequently change the estimated costs

of meeting EU greenhouse gas targets (i.e., reducing

greenhouse gas emissions by 80–95% by 2050) which are

currently obviously tilted towards sequestration (Vass and

Elofsson, 2016).

The accounting of harvest as emission inhibits the

possibility to including harvest in certification

schemes of balancing fossil fuel emissions. In this

context, harvest is not a loss of carbon but a positive

contribution for substitution. The loss of carbon from

the biosphere occurs only with decomposition and

with burning of biomass. The lack of recognition of

on-site forest harvested products as a positive mitiga-

tion contribution to climate policy undermines the

willingness of private owners and public bodies to

take care of forests and the landscape.

The sustainability definition of the EU includes not

only forest structure, but also social and economic pa-

rameters (Resende et al., 2021). It is beyond the scope of

this study to discuss the environmental and social bene-

fits of forests within the concept of sustainability.

4 Conclusions
Building up the carbon flow still remains a challenge

today and the analysis of the data available point to a

discrepancy of the estimation of the major fluxes and

their response to harvest. By harvesting trees, the carbon

balance of forest ecosystems seems unchanged; thus, the

energy represented by the emissions from harvested

wood is bypassing the forest area. If not burnt, the car-

bon in wood would reach the atmosphere via decompos-

ition without substituting fossil fuels. Therefore, using

wood from sustainably managed forests is carbon neu-

tral. The half-lives of products are similar to the half-live

of wood during decomposition. Under sustainable man-

agement no “carbon debt” is recognizable at landscape

scale.

Here, we suggest that on-site changes in forest carbon

stocks on a landscape level represent a risky and im-

probable target. They should be zero under sustainable

management and in an equilibrium state of natural for-

est development. When harvested trees are processed

into wood products, an additional stock of carbon out-

side the forest is created. Stopping wood supply from

domestic forests could have detrimental effects to global

climate mitigation.

The main contribution to mitigation of sustainable

forest management is not an “immediate emission” but a

replacement of fossil fuels by regenerative materials. It is

the avoidance of fossil fuel use for energy production.

This is independent of the energy density of wood.

The process of harvesting wood should become certi-

fied as a climate mitigation strategy.
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